
sc2 Simulation and Runtime Implementation

Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract

sc2 is a new implementation of the Streams-C language and compiler. This document describes the design and implemen-
tation of the sc2 preprocessors and runtime and simulation libraries. The sc2 Reference Manual contains more information
on the Streams-C programming language and the sc2 compiler structure. It should be read before reading this document.
The sc2 preprocessors take as input the sc2 language program and translate the user directives into C++ code in the case of
simulation or synthesis. For hardware processes, the preprocessor produces compiler pragmas as well. The Sim/RT libraries
contain the code for initiating and terminating processes, communicating through streams and signals and the sc integer
types.

1. Introduction

This document describes the implementation of the sc2 preprocessors and the simulation and runtime (Sim/RT) libraries.
First, we will describe the goals of the sc2 Sim/RT implementation and changes from the previous implementation. We
describe the organization of the sc2 compiler up to, but not including the back end stages, which translate the program’s
hardware processes into VHDL for the FPGAs. We describe the different paths the program can take depending on whether
the user is compiling for simulation or synthesis. In the synthesis case, we describe the preprocessing required for the
user’s hardware processes versus software processes. We also describe the organization of the Sim/RT libraries – the way
they implement processes, streams, signals and sc types. This description will also include how the intrinsic functions are
implemented. A brief summary of the directory structure of the Sim/RT libraries will be presented as well.

2. Goals of the sc2 Sim/RT libraries

In the case of simulation, the goals of the Sim/RT libraries are to translate the user’s directives into code necessary to
implement software and hardware processes, streams and signals in software. The program should do the same thing it would
if it were running with a combination of hardware and software processes, however it will not have the same performance,
since it is only running in software. The outputs, however, should be the same. The simulation case should be used to check
that process, stream and signal connections are correct. It should be able to provide information, via print statements, to the
user about its execution paths and state.

In the case of synthesis, the goals of the Sim/RT libraries are to do two translations. For the software processes, it
translates the user’s directives into code necessary to implement them in software. For the hardware processes, it does
a separate translation which includes the C code for the hardware processes. It also generates compiler pragmas for the
synthesis compiler. The synthesis compiler processes all of this to generate the hardware codes (in VHDL) needed to run the
processes on FPGAs.

New goals for the sc2 Sim/RT library implementation (beyond what was in the original version):

� Signals and their accompanying wait() and post() functions

� Predefined integer datatypes (signed and unsigned integers of various bit lengths)

� Arrays of processes, which implies arrays of streams and signals, since each process will contain the same number and
type of streams and signals, just perhaps connected differently.

� Different way of specifying processes, streams and connections in the directives written by the user. sc2 eliminates
STREAM directives and INPUT and OUTPUT directives in the PROCESS definition. sc2 adds stream and signal
element datatypes to the IN/OUT STREAM and SIGNAL directives and adds a CONNECT definition to connect the
streams and signals of the different processes.

� Processes can be initiated and terminated dynamically by main() or other software processes.

� sc2 allows the possibility of running processes on other machines in a network or cluster. The communication portion
of the implementation then needs to be designed to allow you to implement the sc2 software processes in different
ways (threads or regular UNIX processes on one host or over a network) and to be able to implement the hardware
processes on FPGAs on other machines as well.

2

pre−processor

app.sc

sc2 simulation
pre−processor

Hardware proc. Software proc.

FRONT END

BACK END

SIMULATION

BACK END
SYNTHESIS

FRONT END
SYNTHESIS SIMULATION

...

cpe0.x86
 pe1.x86

(app reads
.x86 files)

app_syn.cpp

Hardware

 API

synthesis

simulation

libraries

libraries

sc2

sc2

Hardware

app.sc

app_sim

pre−processor

app.cf

Synthesis

Compiler

app_cpe0.vhd
app_pe1.vhd

CAD

Arch.
Def.

Library

G++G++

Tools

Streams
Bit

app_sim.cpp

app_syn

Figure 1. Organization of sc2

3. Organization of the sc2 Sim/RT Libraries

The figure above shows the organization of the sc2 compiler.
The Sim/RT portion described by this document includes all of the components above the dotted line. Below the dotted

line lies the back end of the system, the true compilers. On the left is the synthesis path of execution. In this path, the user
expects the program to be compiled to run software processes in software and to run hardware processes on the FPGAs.
Within the synthesis side, the user’s program is broken down into two parts, the software and hardware processes which get
processed further either by linking to the Sim/RT libraries or by going through the synthesis compiler. The Sim/RT libraries
contain the code that implements the processes, streams, signals and sc datatypes. The hardware API library contains the
interface to the hardware used by the hardware processes in the program. This library is used when software processes need
to communicate with hardware processes (in the implementation of streams and signals). The synthesis compiler outputs bit
stream files, which represent the functions run on each of the FPGA board processors. These bit stream files are read in by
the application executable. In contrast, on the right side of the figure is the simulation path of execution. In this path all
processes are implemented in software.

3

4. The Preprocessors

4.1. Preprocessing for Software Side of Synthesis

For software processes, the app.sc file is preprocessed into a file called app syn.cpp. Each process defined becomes a
new derived class of sc sw process or sc hw process. Each process class defines a constructor and member function run()
(which merely calls the PROCESS FUN defined for that process). The PROCESS FUN directive becomes a function with
the name of the PROCESS FUN, taking one argument, a pointer to an object that is the class type of the process. Each
process function is allowed one parameter, which is implemented as a member of the newly defined process class. Streams
and signals are also members of each process class declared. They all can be easily accessed in the run functions since the
process object is passed as an argument. A global variable, sc2 processes, is an array of the newly created process objects.
An sc system object is created as a global variable, “sc2 system”. The app syn.cpp file will contain class definitions of
software and hardware processes, but run functions only of the software processes. The main() will be augmented to contain
assignments for registers of the hardware ports that will connect to software ports, the connect calls to connect streams and
signals between software processes and between software and hardware processes, and in the case of using memories, it will
make the call to initialize the memories. The main() is also augmented to start up and shut down the processors being used
in synthesis as well as to start up and shut down the software system.

4.2. Preprocessing for Hardware Side of Synthesis

On the hardware side, the app.sc file is processed and translated into one file called app.cf before being processed by the
synthesis compiler. It includes:
� the architecture definition of the hardware (in pragmas).

� include files, such as macros for the hardware compiler and other things.

� extern declarations of functions that are running in software and their pragmas

� definitions of functions running in hardware and their pragmas.

� pragmas for each process declared in ///PROCESS

� pragmas for each connection declared in ///CONNECT

Function headers have void return values and take processes and parameters as arguments. Pragma syntax is defined in the
sc2 Reference Manual.

4.3. Preprocessing for Simulation

The app.sc file is processed and translated into app sim.cpp. This is done in a similar manner to preprocessing for the
software side of synthesis, however every process is a derived class of sc sw process. All connections are represented and all
run functions are included. There are, however, no register assignments or startup/shutdown of processors.

4.4. Preprocessor Examples

Some examples are presented here to illustrate the C
���

code generated for synthesis and simulation. The pragmas
generated by the preprocessor for the hardware (the .cf file) are not presented here, as they are explained in the sc2 Reference
Manual.

Consider the following sc2 directives for a hardware process.

/// PROCESS_FUN controller_run
/// PROCESS_FUN_BODY
/* code omitted */
/// PROCESS_FUN_END

/// PROCESS controller PROCESS_FUN controller_run TYPE HP ON PE0

4

For the software side of synthesis, it will become a sc hw process, running on a processor, PE0 (the run function is not
included for hardware processes).

class controller_c : public sc_hw_process {
public:
controller_c(const char* process_name,

unsigned int new_id,
sc_system* sys,
processor* pe)

:sc_hw_process(process_name, new_id, sys, pe)
{
}

void* run(){};
};

controller_c* controller = new controller_c("controller", 1, sc2_system, PE0);

For the simulation, it will become an sc sw process running on the host machine with code included for the run function:

class controller_c : public sc_sw_process {
public:
controller_c(const char* process_name,

unsigned int new_id,
sc_system* sys,
host_machine* hm)

:sc_sw_process(process_name, new_id, sys, hm)
{
}

void* run();
};

controller_c* controller =
new controller_c("controller", 1, sc2_system, sc_host);

void* controller_run (controller_c* proc)
{
/* code omitted */
}

Consider the following sc2 directives for a software process with a port (an output stream) and a parameter:

/// PROCESS_FUN host1_run
/// OUT_STREAM sc_int32 output_stream
/// PARAM int iterations
/// PROCESS_FUN_BODY
/* code not included here for simplicity */
/// PROCESS_FUN_END

/// PROCESS host1 PROCESS_FUN host1_run

For the software side of synthesis and for simulation, it becomes an sc sw process (with process id 3) with a stream and
the parameter as members of its class.

class host1_c : public sc_sw_process {
public:

5

sc_outstream<sc_int32>* output_stream;
int iterations_param;
host1_c(const char* process_name,

unsigned int new_id,
sc_system* sys,
host_machine* hm)

:sc_sw_process(process_name, new_id, sys, hm)
{
output_stream = new sc_outstream<sc_int32>(this);

}
void* params(int iterations);
void* run();

};

host1_c* host1 = new host1_c("host1", 3, sc2_system, sc_host);

void* host1_run (host1_c* proc, int iterations)
{
/* code not included here for simplicity */
}

void* host1_c::params(int iterations)
{
iterations_param = iterations;

}

void* host1_c::run()
{
host1_run(this, iterations_param);

}

Consider the following example with an insignal on which it will wait.

/// PROCESS_FUN waiter_run
/// IN_SIGNAL sc_int32 insig
/// PROCESS_FUN_BODY
sc_int32 data = sc_wait(insig);

/// PROCESS_FUN_END

/// PROCESS_FUN poster_run
/// OUT_SIGNAL sc_int32 outsig
/// PROCESS_FUN_BODY
sc_post(outsig, 1);

/// PROCESS_FUN_END

/// PROCESS waiter PROCESS_FUN waiter_run TYPE SP ON sc_host
/// PROCESS poster PROCESS_FUN poster_run TYPE SP ON sc_host

The following code would be generated for the sythesis and simulation cases. Notice that the sc wait() call must be
transformed to indicate the signal datatype and the number of signals for which the process is waiting.

class waiter_c : public sc_sw_process {
public:
sc_insignal<sc_int32>* insig;

6

waiter_c(const char* process_name,
unsigned int new_id,
sc_system* sys,
host_machine* hm)

:sc_sw_process(process_name, new_id, sys, hm)
{
insig = new sc_insignal<sc_int32>(this);

}
void* run();

};

class poster_c : public sc_sw_process {
public:
sc_outsignal<sc_int32>* outsig;
poster_c(const char* process_name,

unsigned int new_id,
sc_system* sys,
host_machine* hm)

:sc_sw_process(process_name, new_id, sys, hm)
{
outsig = new sc_outsignal<sc_int32>(this);

}
void* run();

};

waiter_c* waiter = new waiter_c("waiter", 1, sc2_system, sc_host);
poster_c* poster = new poster_c("poster", 2, sc2_system, sc_host);

void* waiter_run (waiter_c* proc)
{
sc_int32 data = sc_wait<sc_int32>(1, proc->insig);

} /* Process Fun End */

void* waiter_c::run()
{
waiter_run(this);

}

void* poster_run (poster_c* proc)
{
sc_post(outsig, 1);

} /* Process Fun End */

void* poster1_c::run()
{
poster1_run(this);

}

For the same example, consider the sc2 program’s CONNECT directive and main():

/// CONNECT waiter.insig poster1.outsig

void main(int argc, char *argv[])

7

{
sc_initiate(waiter);
sc_initiate(poster);

}

The following would be produced for the simulation and synthesis code. The preprocessor has added the connect() call,
the system startup and shutdown code.

void main(int argc, char *argv[])
{
connect(waiter->insig, 16, poster->outsig, 16);
sc2_system->startup();

sc_initiate(waiter);
sc_initiate(poster);

sc2_system->shutdown_wait();
}

Consider the array of processes indicated by the following directives:

/// PROCESS kmeans[2] PROCESS_FUN kmeans_run TYPE HP ON sc_host

/// CONNECT kmeans[0].output_stream kmeans[1].input_stream

For simulation and synthesis, the following would be generated (assuming there is a prior kmeans c class definition, which
is omitted for simplicity).

sc_process_array<kmeans_c, 2>* kmeans_array =
new sc_process_array<kmeans_c, 2>("kmeans", 2, sc2_system, sc_host);

kmeans_c** kmeans = kmeans_array->proc_array;

void main(int argc, char *argv[]) {
/* code omitted */
connect(kmeans[0]->output_stream, 16, kmeans[1]->input_stream, 16);
/* code omitted */

}

The sc initiate() and sc terminate() intrinsic functions are transformed by the preprocessor in the case of being called with
a range of processes within a process array.

/// PROCESS poster[5] PROCESS_FUN poster_run TYPE SP ON sc_host

/* assume this is taken from a run function or main() */
sc_initiate(poster[0..3]);

For synthesis and simulation, the sc initiate() call is transformed as follows (sc terminate() works the same way):

sc_initiate(poster_array, 0, 3);

8

sc_system sc_sw_process

sc

sc_hw_process sc_instream<sc_intT>

system sw_process hw_process instream

Note: application processes

specialized stream and signal objects

 outstream

sc_outstream<sc_intT>

Application

Communication

(same for insignal

and outsignal)

host_process_c pe1_process_c

have members that are pointers to

Figure 2. sc2 Sim/RT Class Hierarchy

5. The Sim/RT Libraries

The figure above shows the different layers in the Sim/RT library implementation.
At the lowest place in the hierarchy is the application layer, which may, for example, define two processes, “host process”

and “pe1 process”, connected by one stream. For this example, “host process’ is a software process, “pe1 process” is a
hardware process and the stream is an sc int32 datatype stream. The preprocessor translates the user directives into classes
“host process c” and “pe1 process c”. As you can see from the class hierarchy diagram, the application level classes are de-
rived from a set of “sc” classes. These are a generic set of classes used for implementing the sc2 user directives. However, they
are really implemented for the underlying communication protocols by the communication layer at the top of the hierarchy
diagram. The “sc” classes are all derived from classes in an upper layer, the communication layer. For this implementa-
tion, these communication layer classes and their methods are specifically implemented for threads. Other communication
protocols at this level must provide the same named classes and methods.

9

sc2_processes

(sc_system)

Hierarchies

outstr : outstream<sc_int32>*

instream<sc_int32>

myfifo : fifo* instr : instream<sc_int32>*

outstream<sc_int32>

myfifo : fifo*

sc_outstream<sc_int32>

basic_stream

outstream

sc_instream<sc_int32>

instream

fifo

hw_fifo

pe1_process

sc_sw_process sc_hw_process

sw_process hw_process

process

hw_fifosw_fifo

host_process

pe1_process

host_process_c

_c

(array of pointers to processes)
processes : process*
sc_system

sc2_system

Object References
(bold names are global variable names of objects)
(top name in box is the class name, below are member names and their type)

(arrows are pointer references)

Figure 3. sc2 Sim/RT Object Connections

The figure above illustrates the way objects in the Sim/RT would be connected in the previous example where software
process “host process” is connected to hardware process “pe1 process” by streams. The words in the bold type indicate a
global variable name for the object. There are global variables for the sc system object, the process objects and the array
that refers to a list of the processes in the system. The top word in a box is the object’s class. For software to hardware
connections in the pthreads implementation, the hardware fifo is implemented with a single object, pointed to by both the
instream and outstream. Note that software to software connections use a software fifo.

The following sections will describe in more detail the implementation of each of the Sim/RT layers and classes in the
layers.

5.1. System

Since the sc2 program can be implemented with different process models and because processes can be dynamically
intiated and terminated, the sc2 implementation must provide a system class that represents the system as a whole.

Processes can potentially execute on different machines, or on the same machine, so there must be a way to get information
about them. Also, since processes can be dynamically initiated and terminated, the system class must keep track of them.
These were not issues in the previous version of Streams-C, because processes were only implemented with threads residing
on one machine and were initiated all at once in main(), never reinitiated. At the end of main, it would do a join to make sure
all the processes were finished before exiting.

The sc system class represents the system object. It must somehow contain the process objects running in the program. It
is constructed by giving an array of sc process objects and array length.

The sc system class is derived from base class system, which is expected to be provided by the communication layer.
The system class is expected to provide the following operations: startup(), initiate process(), terminate process() and shut-

10

down wait().

5.2. Processes

sc2 processes are represented by objects of classes that are derived from sc sw process and sc hw process. These classes
are initialized with a name and unique ID of the process. The sc [sw,hw] process classes are derived from [sw,hw] process
classes in the communication layer, which implements initiate() and terminate().

5.3. Built-in sc Types

In a regular sc2 implementation (without an added fixed width integer library) 8 sc types are implemented: sc int8,
sc int16, sc int32, sc int64, sc uint8, sc uint16, sc uint32 and sc uint64. In order to implement the full range of types
defined in the sc2 language, the user must use an added fixed width integer library such as the SystemC and ART libraries.
This is described in the sc2 Reference Manual.

5.4. Streams

There are two types of streams at the comm layer. In the sc layer, a template allows the user to define a stream with
an sc integer type as its parameter. For example, sc instream � sc int32 � is a 32 bit signed integer type of instream. The
stream classes are derived from non-templated classes instream and outstream. These base classes are implemented in the
communcation layer. For example, sc instream � sc int32 � would be derived from the instream class.

In main() streams are connected to each other if they are both in software processes, or one is in software and one is in
hardware. Hardware to hardware connections are not represented. The fifo size (number of elements in the fifo) is passed as
parameter when streams are connected.

5.5. Signals

Signals work in an analogous way to streams as far as being templated and their derived classes. They are also connected
in a similar way.

5.6. Error Checking

Error checking is done at the sc level, so that the implementation provides consistent error checking no matter what the
communication implementation is.

6. sc2 Intrinsic Functions

Most of the sc2 intrinsic functions are implemented as macros. This way, the correct function can be called depending
upon what kind of process, stream, signal or sc integer type is passed as an argument or expected as a return type. This
works, because in the process run functions, the process object is passed in as a parameter “proc”. The streams and signals
are accessible from the process object. sc2 system is a global variable, so is accessible that way.

7. The Communication Layer

The various implementations of the communication layer must implement the following interface, which is expected by
the “sc” layer of the Sim/RT. (Make this a table.)

� system c, with methods register process(), initiate process() and terminate process(), startup() and shutdown wait().

sw,hw process with methods initiate() and terminate()

� instream, with methods set element bytes(), read() and connect ports()

11

� outstream, with methods set element bytes(), write() and connect ports()

� insignal, with methods set element bytes(), connect ports(), wait for me(), register wait(), wait for many()

� outsignal, with methods set element bytes(), connect ports() and post()

� host machine

8. Pthreads Implementation of Communication Layer

8.1. System

For the pthreads implementation of the sc2 processes, the system object contains an array of the processes that can be
initiated by the program. It also contains a pointer to a process that represents its own process. It must also contain a mutex
and condition variable so that it can wait until all processes have exited before exiting the main() routine. It cannot exit main()
early in shutdown wait() or else that will terminate all the other running threads prematurely.

8.2. Processes

Each process class object has state which says whether it has been initiated. This is set to false in the constructor, then set
to true after the pthread create call is done. There is a mutex protecting this member. It also contains a pointer back to the
sc system object and a pthread handle for itself.

In the implementation of initiate() and terminate() the sc system class must get ahold of the mutex in order to set the
“initiated” flag for the object.

8.3. Streams

As mentioned in the Stream section, the sc streams are derived from classes instream and outstream. The software to
software connections are implemented in pthreads with only a fifo member. A stream of a software process will share a
sw fifo with another stream of a software process. If the connection is hardware to software or software to hardware, they
will both be set to point to a hw fifo object.

sw fifo objects contain a pointer to a buffer and pointers to the head and tail of the fifo. There is a mutex for the fifo and
two condition variables, representing the conditions “closed or not empty” and “not full”. “closed or not empty” is required
because the outstream may set itself to closed, in which case the instream should not be able to read from it, even if there is
data there. So, the instream checks for the outstream setting the fifo to closed, or to not empty. In the case of closed, it returns
with the data set to 0.

12

sc_insignal<T>

mysig_data : sig_data*

signal_handler

sig_list : sig_data*

sw_process

insig : sc_insignal<T>

sw_sig_data

sw_process

outsig : sc_outsignal<T>

sc_outsignal<T>

mysig_data : sig_data*

next : sig_data*

sw_sig_data

next : sig_data*

sig_handler : signal_handler*

handler : signal_handler*

handler : signal_handler*

(other sig_data)

(an insignal)

(an outsignal)

Figure 4. sc2 Signal Implementation

8.4. Signals

When connected, signals point to either sw sig data or hw sig data objects in a similar way to how streams work. The
sig data objects contain the information needed to store signal values, indicate that a value is stored, and indicate that it is a
signal for which the process should wait. sig data objects that represent data for insignals for a particular process are chained
together in a linked list. A signal handler object associated with the process has access to this list and uses it to check for
incoming signals. When a process does an sc wait(), the sig data for each incoming signal specified in the call is marked
“waiting”. The signal handler object traverses the list of sig data, checks which are “waiting” and checks if a new value has
been posted to them. The posting process sends the data to be posted to the receiving process, whose signal handler object
posts it.

13

bin lib

{SC_BASE}

{SC_MACHINE}sc2cf
sc2cf.perl
sc2simcpp

sc2syncpp
libsc_comm.a
libsc_comm_aux.a
libsc_comm_syn.a
libsc_sim.a
libsc_syn.a

.streamscrcsrc

comm

sim_rt synth util

doc

sc2cf
sc2cf.perl
sc2simcpp

sc2syncpp

sc.h
sc2.h
sc_comm.h
sc_comm_syn.h
sc_macros.h

sc_syn.h
sc_synth.h pthreads

include

sc

sc_comm.cpp
sc_comm.h
sc_comm_aux.cpp
sc_comm_syn.cpp
sc_comm_syn.h

sc.h
sc.cpp
sc_syn.h
sc_syn.cpp
sc_macros.h
sc_types.h
libsc_sim.a
libsc_syn.a

apps

Makefile strm kmeans

strm.sc kmeans.sc

...

(Note that bin, lib and include directories
contain files COPIED from the src tree)

sc_install
sc_uninstall manual sim_rt

sc2.{ps,pdf,dvi}

sim_rt.{ps,pdf,dvi}

pre

sc2cpp.perl

sc2cpp.perl

libsc_comm.a
libsc_comm_aux.a

sc_util.h
libsc_comm_syn.a

sc_types.h

Figure 5. Organization of Sim/RT code

9. Directory Structure

The “src/util/pre” directory contains the preprocessors for simulation and synthesis. The “/src/sim rt/sc” directory contains
the “sc ” classes. The “comm” directory is meant to include potentially many implementations of the communication layer
of the Sim/RT. Right now, only “pthreads” is being implemented. The “lib” directory contains the libraries needed by an
application program to be processed by the Sim/RT. These libraries include the “sc” and “comm” libraries. The “include”
directory includes all the include files for Sim/RT processing as well. The “bin” directory includes the perl scripts. The
“apps” directory contains example applicatiosn for the user to read and run to help understand how to use sc2. The “doc”
directory includes the sc2 reference manual (sc2.ps,dvi,pdf), and this document (sim rt.ps,dvi,pdf).

14

